
Security Testing: Turning Practice into Theory

Sven Türpe
Fraunhofer Institute for Secure Information Technology SIT

sven.tuerpe@sit.fraunhofer.de

Abstract

This position paper proposes a research agenda for

the field of security testing. It gives a critical account
of the state of the art as seen by a practitioner and
identifies questions that research failed to answer so
far, or failed to answer in such a way that it would
have had an impact in the real world. Three categories
of research problems are proposed: theory of vulner-
abilities, theory of security testing, and tools and tech-
niques.

1. About this Paper

The science of security testing is still in its infancy.
This paper proposes a research agenda for this field. It
does so from a very specific perspective: that of a
tester who, being aware of the lack of a scientific basis
of his work, has to and wants to assess the security
level of software systems on the basis of testing. What
such a tester needs is not research papers but useful
tools that optimize the work that is already being done
in various labs around the world. The key underlying
assumption of this paper is therefore that research
should take an approach similar to what a usability
engineer would do when designing a tool: first under-
stand the task, then design solutions and tools. Hence
the title, turning practice into theory.

This paper contains no original research whatso-
ever. Rather, it is a position paper and conveys the
author’s opinion on the subject. The author has a back-
ground in applied research and practical security test-
ing, which may explain some of the views expressed
here. Primarily, the present paper collects problems the
author encountered during several years of testing and
evaluating systems for their security. Secondarily it
presents a number of observations how security testing
is approached today, none of which should be taken for
more than anecdotal evidence, though.

The remainder of this paper is organized as follows:
Section 2 outlines the author’s conception of security

testing. This section serves as an extended introduction
as the readers’ backgrounds and views on the topic
may vary. Sections 3 through 5 propose research prob-
lems n three different areas. Section 3 is dedicated to
vulnerabilities as such, section 4 deals with the concep-
tual side of testing, and section 5 is about actual tools
that might be useful in the field. Finally, section 6
wraps up the paper and draws a short conclusion.

Since this is a position paper the author does not at-
tempt to provide references for the individual views
expressed or dismissed. References are provided where
they are available and helpful for understanding or
recommended for further reading.

If not specified otherwise, the considerations in this
paper primarily apply to the security testing of applica-
tion software. This does not imply any particular as-
sumptions but should be considered if claims made
here seems to contradict results that had been achieved
for special cases. Claims and suggestions made here
may be wrong, in particular, for very small systems,
such as a smart-card operating system; for very re-
stricted concepts of security or vulnerability, e.g. test-
ing for buffer overflows and nothing else; and for secu-
rity systems, i.e. systems whose sole purpose is to en-
force security policies, such as firewalls or security
mechanisms of operating systems.

2. Real-world Security Testing

There may be different views what security testing
is or is not. This section outlines the author’s view
without claiming that it would be the only, the most
appropriate or the most complete one, or in any other
way special. The sole purpose of this section is to pro-
vide some mental background for the statements to
follow.

2.1. What is Security, Anyway?

Security is one of the many aspects of software
quality. A piece of software could be functionally cor-

rect yet lack quality: usability, stability, security, or
others. As a preliminary definition, we may character-
ize security as follows:

Software security is the absence of properties and
features that pose a risk to the operator of the software
or third parties if they are exploited with malicious
intent.

Note that properties and features at this point may
include a wide range of things from the way a piece of
software performs access control to the way it interacts
with the user. If something can be exploited, it is cov-
ered by this definition. Excluded, on the other hand, is
anything that does damage through mere accident.

This definition has a number of implications. First
of all, this definition puts emphasis on exploits rather
than security functions. Counting security functions
obviously does not determine the quality of their im-
plementation and thus, their resistance against mali-
cious attacks. It is also a well-known fact that real-
world security issues rarely appear within the security
functions of a system. Buffer overflow errors, for in-
stance, may appear anywhere in a system and their
impact usually does not depend upon security func-
tions at all.

Second, the definition is designed to directly con-
flict with the concept of testing. Testing, as we are all
aware, can never show the absence but only the pres-
ence of errors. Yet security ultimately is about the ab-
sence of certain types of errors. Whether this is an is-
sue or just a matter of language shall remain open here.

Third, this definition – wrongly – follows the all too
common practice of ignoring the attacker’s motivations
and all economic considerations. It does so very rigor-
ously, though, in that it also ignores what is commonly
known as security objectives. Well, not entirely: such
considerations are buried under the seemingly innocent
terms risk, exploit, and malicious. More in-depth con-
siderations shall remain in the background for the mo-
ment as common notions such as confidentiality – in-
tegrity – availability may do little to guide efficient
security testing.

All in all, the definition emphasizes what makes se-
curity testing hard: the fact that one is supposed to test
for something very unspecific. Security testing is about
finding things not specified, before somebody else
finds them.

2.2. Motivations and Constraints

Real-world security testing has real-world purposes.
Its point is not, usually, to find some obscure instance
of some obscure class of bugs for which one happens
to know a testing technique. Who does security testing,
why are they doing it and what matters to them? What

are (some of) the constraints under which security test-
ers commonly have to work?

Security testing may occur in such diverse positions
as: development or quality assurance on the part of a
manufacturer; operators of a system; various 3rd par-
ties, such as administrative bodies, the media, research,
or expert witnesses in a court hearing; as an adversary
testing with malicious intent; or in an independent
laboratory on behalf of any of these roles. One impor-
tant implication of the tester’s position is side condi-
tions. While a developer for instance naturally has ac-
cess to source code a 3rd party or operator may not, yet
face the same questions about security.

Consequently, there is a wide range of possible ob-
jectives that the tester might pursue: find one issue that
can be exploited or find all of them; find issues any-
where or in a specific part, subsystem or function; find
defects of a specific type or anything that could be ex-
ploited; give a rough assessment or provide sufficient
evidence for a security certificate; test an individual
target or compare several of a similar kind; make the
general public believe that one product is more secure
than another.

These enumerations are likely incomplete but suffi-
cient to suggest that one single approach might not
serve all needs, and that a real-world tester will hardly
ever encounter ideal conditions for security testing that
are assumed by so many research papers. To be useful
in practice, a testing technique or tool must work at
least for one combination of position, side conditions
and objective.

Depending on their situation, security testers may
be subject to a number of constraints. Besides the
common resource limits – CPU power, memory, time,
money, network bandwidth, etc. – they are often facing
a particular issue. Security testers often have to work
with incomplete information about a system, thus be-
ing in a similar situation as the adversary.

2.3. Security Testing Today

As far as practice is concerned, a science of security
testing seems non-existent. The only notable exception
may be security certification which, however, tends to
be focused on security functions and ignores most of
the interesting (read: difficult) issues. A system may be
security certified yet insecure, as for instance the case
of the Xerox WorkCentre printer has shown. This de-
vice passed a Common Criteria evaluation [10] but was
demonstrated to have severe vulnerabilities just a few
months later in a BlackHat conference presentation
[17].

In the field, people do what they can, and this is not
much. Ad-hockery and makeshift tools seem common.

Common techniques generally known or observed by
or reported to the author include:
• Checklists of varying depth and quality. They

may contain items as unspecific as: all input
should be sanitized.

• Generic tools such as monitoring tools (e.g. for
network traffic, file access etc.), interfacing tools
(e.g. Netcat [5], Socat [9], Scapy [8], etc.) and
programming languages (often scripting lan-
guages such as Perl, Ruby, Python, and others).

• Fuzzing [16], sending more or less random input
to an interface in the hope of hitting a bug some-
where by chance. Alas, fuzzing is about how to
look but not what to look for. A more targeted
way of fuzzing is also called fault injection [22].

• Vulnerability scanners, particularly for Web ap-
plications, whose performance is generally rather
poor. They tend to miss important issues and to
produce too many false positives [18,23].

• Re-use of functional test cases and their modifica-
tion into security test cases, e.g. by changing test
inputs in such a way that they might trigger fur-
ther error conditions.

• People running Nessus (yes, that Nessus [4]) or
other inappropriate tools on every system pur-
chased.

• Hacking or hiring hackers, hoping they would
know more than we do. They don’t usually, but
hackers produced the majority of the testing tools
that we know today.

If science has had any proposals for better tools,

they haven’t found their way into the security labs and
development shops out here. This point is supported by
a look into recent textbooks. In the 2006 edition of [15]
for instance just 15 out of about 400 pages are dedi-
cated to software penetration testing, and [24] men-
tions only 3 recent papers on security testing.

We know on the other hand that hackers of which-
ever hat color are successful in security testing at least
to the extent necessary to find some vulnerabilities
sometimes, so there must be something that can be
done and is being done.

2.4. Requirements for Useful Tools and
 Techniques

It would be a research project on its own to gather

and specify detailed requirements for testing tech-
niques, tools and frameworks that will work in the real
world. A few suggestions are appropriate for this pa-
per, though.

First of all, useful tools must address the right prob-
lem(s): help us to test for the issues that commonly

appear in software and are not easily fixed by using a
more programmer-friendly platform. If you think of the
OWASP Top Ten [6] at this point, you are probably
right.

Second, they must not require idealized side condi-
tions. Techniques are needed that continue to work
under the adverse conditions often encountered in se-
curity testing. They must be robust and work well with
incomplete information about the target of testing.

Third, tools and techniques must provide guidance
to their users throughout the testing task. While generic
interfacing tools are the most useful today, they don’t
do anything to help their users design test cases.

Fourth, results must be useful under real-world con-
ditions. The vulnerability scanners that we have today
don’t live up to this standard.

Fifth, tools and techniques should provide, or be
based on, useful abstractions. In particular they should
provide abstractions from implementation detail, such
as the particular languages or network protocols in-
volved, where the issues tested for are structurally
similar.

Real-world testers might be willing to sacrifice
rigor and formality to robustness, usefulness and us-
ability.

3. Understanding Vulnerabilities

The basis of all systematic security testing must be

a comprehensive theory of vulnerabilities. This is
something we miss almost entirely today or if it does
exist, it hasn’t reached the practitioners in the field. We
do not even share a common terminology, we rather
invent new terms whenever there is an opportunity to
do so. The world of security testing today is full of
special cases with melodious names and phenomenol-
ogy but largely free of meaningful concepts and ab-
stractions. To develop more appropriate ways of talk-
ing about vulnerabilities is therefore one of the re-
search topics proposed here.

3.1. Descriptions, Classifications and
 Abstractions

Meaningful descriptions are the basis for all further

analysis. Instead of just naming vulnerabilities we need
to understand them. What are their exact properties and
side conditions? What are the properties of a system,
subsystem or function that has the specific kind of vul-
nerability vs. those of one that does not? What are the
exact symptoms of the vulnerability or, preferably, a
class of vulnerabilities, and how can these symptoms
be observed or tested? What is its exact impact if ex-

ploited, in which context? There have been some at-
tempts in this direction already [17,19] but such
knowledge ages.

Once we really understand individual vulnerabilities
we should attempt to classify them according to the
needs of testing. This means that we should develop
abstractions based on properties that matter for testing,
hence the term symptoms in the paragraph above. The
various types of injection vulnerabilities for instance
represent a common underlying problem and should be
treated accordingly. Useful abstractions are also
needed regarding side conditions. SQL injection for
instance if often perceived as a common problem of
Web applications while it really is a common problem
of database front-ends.

3.2. Causes of Vulnerabilities and the Role of
 Architecture

It may not always be the programmer who is at

fault. Understanding the causes of vulnerabilities will
enable us to target our testing. It is well-known that the
technologies and platforms used determine, at least in
part, the vulnerabilities to be expected. On the one
hand a platform can relieve the programmer from cer-
tain worries. One example is the Java platform that
makes it difficult for the programmer to create buffer
overflow errors. On the other hand there are platforms
that seem to invite certain types of errors, like Web
technologies do for the OWASP Top 10 set of bug
types. There may be a simpler explanation here, how-
ever, as Web technologies by means of accessibility
also invite large numbers of inexperienced program-
mers.

One particular problem is the role of system archi-
tectures. Web technologies, to stick with this example,
are based on an architecture that may explain some of
the vulnerabilities commonly found in applications
based upon them: the developer works on both sides of
the trust boundary between client and server but re-
ceives little support in observing it. Can we devise a
broader understanding of the role of software architec-
tures for software security? We do have some stubs
already, such as the principle of least privilege.

Furthermore we must look beyond the limits of the
individual system or component at hand and consider
its environment(s). It is just too easy to make false as-
sumptions here, so security testing must take into ac-
count how the test target is or may be embedded.

The underlying objective is to gain priorities for test
planning and stopping or assessment criteria for testing
or test results.

3.3. Empirical and Probabilistic Research

We may need more data. Useful data, to be precise,

which means data within the framework of appropriate
descriptions, classifications and abstractions outlined
above. Can we find common principles, laws, or distri-
butions that help us to guide our testing or to interpret
its results? Locality principles may be a starting point,
as they have been shown to exist for programming
errors in general and thus are likely to apply to security
bugs too. It would be interesting to see if there are rela-
tionships between different types of vulnerabilities, or
maybe even between different aspects of software
quality.

4. Understanding Security Testing

A theory of security testing must go further than

just understanding vulnerabilities. Based on a thorough
understanding of vulnerabilities, a theory of testing
must also take into account the requirements and con-
straints of practical testing. The first and foremost re-
search problem is therefore to gather and understand
these requirements and constraints. This is what put-
ting practice into theory is supposed to mean, to derive
the design of the theory (and later, tools) from the
needs of the intended user.

4.1. Field Studies to Determine Requirements

Security testing does exist as a practice. Inferior as

it may be, there are white-hat and black-hat hackers,
there are in-house and independent labs and there is an
academic community that deals with vulnerabilities. It
may be worthwhile to have a look at what these com-
munities and individual testers are doing to day, and
why they are doing it this way. Lack of better tools
may not always be the sole explanation. There are
probably personal, economic, cultural and other factors
that might be worth studying. Understanding these
factors will make it easier to devise techniques and
tools that work under the constraints that testers are
subject to in their respective environments and com-
munities.

4.2. How is Security Testing Different?

It is commonly felt that security testing is different

from other kinds of testing, and this is probably true.
However, we do not seem to know yet how exactly it
differs, and from what. We do know multiple kinds of
testing already; there are worlds between e.g. a unit test
and a usability test.

One question therefore is what exactly the differ-
ences are, and what their impact is. To what extent can
security testing be integrated with other testing activi-
ties and the development process in general? Would
for instance something like security test-driven devel-
opment make any sense at all or maybe not?

Another question is what we can draw from the
various ways of testing that we know today. Usability
testing for example, although it seems to target very
different issues, may face similar problems as security
testing: both attempt to assess an aspect of quality that
is difficult to quantify and is best described by the ab-
sence of a number of issues. Perhaps we can learn
something by analyzing their methods ant the rationale
behind.

4.3. Metrics and Quantifications

While metrics are tools, their design needs a sound
basis in theory. The question is simple, the answer
probably not: are there meaningful metrics and quan-
tifications that help us describe and compare the results
of our security testing? Are there other means of lossy
yet suitable compression for test results, particularly
beyond a table describing the bugs to be fixed? Also,
are there better ways than we have today to assess and
describe the impact and severity of individual vulner-
abilities? Metrics matter in so many ways in business
environments that some testers today prefer bad met-
rics over having none at all, as metrics are something
that management understands.

4.4. Analysis and Modeling of Security
 Requirements

Security testing as such may to an extent be possi-

ble without understanding the exact security require-
ments for a system. The reason is simply that there are
generic vulnerabilities whose exploitation will violate
any security requirement that one could imagine. In
other words, there are a few things that are always
wrong.

Generally, however, the results of security testing
will be more useful if interpreted with respect to the
actual security requirements of a system or component
and their tradeoffs with other requirements. Things get
complex here again; what is appropriate in one context
may be a vulnerability in another. We therefore need
means to analyze and represent the security require-
ments of an existing system as seen by the tester, and
means to derive conclusions. Such means should allow
us to be accurate where we need to yet sketchy where
information is missing. We also need means to analyze

trust relationships and other security-critical dependen-
cies in a system.

4.5. Systematic DestructionCollection of Evi-
dence

Security testing today still means more or less the

same as hacking: a creative activity. Before trying to
automate this activity it is worthwhile to ponder it for a
while. Particularly, are there more systematic ways of
triggering security-critical conditions that go beyond
random fuzzing and fault injection?

What might be even more important than systematic
destruction – one can always put a system on the Inter-
net as a honeypot and see what happens – are system-
atic approaches to collecting and interpreting evidence.
We know how to fuzz, we know how to inject faults,
but how should we interpret the results? Attempting to
write an exploit is probably not the most efficient way
of doing it.

4.6. The Role of Humans as Testers

There are at least two distinct approaches to security
testing, or really to any testing. One approach is to aim
for the largest possible amount of automation. As re-
gards security, this approach has failed so far, except
for very few niches. For comprehensive security test-
ing – as opposed to testing for very specific types of
vulnerabilities – the state of automation as applied in
the real world is marked by Web application vulner-
ability scanners and their poor performance [14,15].

The other approach is to aim for support rather than
automation. This approach assumes that the human
remains in a central position as a tester, and that the
primary purpose of tools is to support him in this role.

There is no need to pick one of these approaches
and follow it exclusively. However, designers of meth-
ods and techniques should be aware that these – and
possibly more – different approaches exist, and that
automation is not necessarily the best and only way to
go.

Experience in the field suggests that human creativ-
ity is as invaluable in security testing as it is in attack-
ing systems, and that the most successful and most
useful tools are those that support common tasks of
testers. Interactive proxies for Web application testing,
such as WebScarab [7], are one example. A systematic
design of tools of this kind, based on a better under-
standing of the testers' task and needs, may produce
better results than aims for automation that fail in prac-
tice due to their requirements.

On the other hand, to the author’s knowledge we do
not have any evidence regarding which approach might

be more useful. Empirical research is needed here
again, as outlined in the next subsection.

4.7. Meta-testing: Testing Test Tools

Empirical research is needed about the performance

of test tools and testing technique. This probably re-
quires, as a prerequisite, designing specific research
methods. Obvious issues to overcome are the impact of
the individual tester if a method or tool is not fully
automated, and the distinction between actual testing
and auxiliary activities, such as crawling a Web appli-
cation for URLs to be tested. In order to improve the
technique one needs to know where and how exactly it
fails.

4.8. Aspect-oriented Testing?

Security has been considered as an aspect, a cross-
cutting concern, in the sense of aspect-oriented pro-
gramming (AOP). The focus seems to have been, so
far, on typical security functions and features viewed
and treated as an aspect during development.

Can we devise new testing methods from a similar
point of view? This seems justified by the fact that a
vulnerability anywhere in a system can potentially
have an impact on security (although a system should
be designed in such a way that it won’t). Perhaps a
conceptual model derived from ideas of AOP leads to
new insights for testing.

Such an approach might start from a suitable de-
composition of a program or system along with an un-
derstanding of what needs to be achieved for the sys-
tem to be secure in some particular sense. This would
be the aspect view, specifying concerns for the pro-
gram under test. The tester could then attempt to gather
evidence whether the concern is properly dealt with by
the program as a whole or, after decomposing it into
components, by individual parts of it.

In a way, the STRIDE method [13] may be consid-
ered an early and limited version of such an approach:
it takes a set of generic attack techniques and attempts
to analyze how well a system and its components de-
fend themselves against these.

5. Better Tools and Techniques

5.1. Two Examples

Good tools and techniques are simple and universal.

Examples that exist already are attack trees and the
STRIDE method. These two methods cover one par-
ticular aspect of security testing, threat modeling.

Attack trees [19] are a way of thinking about possi-
ble attacks against a system. What they lack entirely is
a systematic method of developing the tree. However,
once an attack tree has been devised in whichever way,
it does a good job communicating the threat model and
supports analysis. Attack trees make no limiting as-
sumptions; they can be applied to just about any secu-
rity problem. Yet they are open to formalization [14].

The STRIDE method [13], the name being an acro-
nym for spoofing, tampering, repudiation, information
disclosure, denial of service, and elevation of privilege,
is another tool that seems to work in practice. It may be
not as universal as attack trees. However, it has the
advantage of guiding the tester towards the most im-
portant considerations.

5.2. Tools We Need

All the theories are useless if they are not used to

create better tools for the tester, be it software tools,
processes, techniques or others. Given the fact that
security is about preventing intelligent adversaries
from reaching their objective, useful tools will likely
support human testers rather than trying to replace
them (but this is yet another open question: how much
automation is good for security testing?)

The call for tools isn’t new at all. It can be found
almost verbatim, although more concise e.g. in [20].
But not much seems to have happened since, except for
the fact that the exciting new tools of then became the
standard tools of today.

This subsection is organized as list of keywords
with little rationale for individual items. The list is
necessarily incomplete. Among others we need:
• Tools and techniques for test planning, that help

us identify, for a given system or component,
what to look for, where to look, and what the pri-
orities should be.

• Tools that help us deal with complexity and size.
Fuzzers and spiders are existing examples: they
help us explore input spaces that may be too large
for comprehensive testing. Other potentially large
spaces are the configurations of a system and its
possible environments.

• Approaches to testing that are neither based in
hacking nor in formal methods. Hacking is too ar-
tistic and often wastes time with obstacles that are
easy to overcome in a test lab environment,
whereas formal methods are often unsuitable in
real-world testing situations that don’t meet their
particular requirements (e.g. availability of cer-
tain knowledge, specifications etc.)

• Tools that work in real settings for various analy-
sis tasks, particularly with incomplete informa-
tion, such as:
o Determine and describe attacks that a given

security feature does not prevent
o Requirements analysis for given systems or

components
o Impact analysis for vulnerabilities found
o Assessing the expected overall number of

vulnerabilities based on what has been
found

o The architecture of a system and the inter-
dependencies between its components or be-
tween its components and the environment.

o Analyze non-technical aspects such as us-
ability or economic factors

• Tools and techniques that can be used at early
stages of the development process. Such tools
should help identify potential vulnerabilities
when at the time they are introduced.

• Advanced threat modeling. Needed are tech-
niques that are as easy to use and understand as
e.g. attack trees, yet are more powerful. In par-
ticular they need to be able to work on incomplete
information, such as a set of test results, and pro-
vide useful abstractions, such as the power to ex-
press e.g. the gains of an attack that achieves an
intermediate goal.

• Tools that help observe and model the behavior of
systems in such a way that conclusions can be
drawn about their security or insecurity.

• Test suites for tools and techniques, and other
practical means of evaluating the performance of
testing methods.

• Advanced debugging techniques and tools. While
the primary purpose of a traditional debugger is to
enable the developer to follow the details of exe-
cution, debugging-style techniques for security
testing should focus on helping the tester to un-
derstand the dynamics of an unknown system. For
instance a tester might need to know what exactly
will be the result of multiple levels of encoding
and decoding, or of code generating other code to
be executed elsewhere after further transforma-
tions. Though it may be wise to avoid such pro-
gramming altogether, the tester has no choice
when encountering a system.

• Better ways of learning, as a community, from
experience. Mailing lists such as Bugtraq [1] and
Full Disclosure [3] or the CVE archives [2] are of
little value as analysis is not as thorough as nec-
essary there.

• Better education for security testers, particularly
better than the trying to become a hacker ap-
proach

And, of course, any tools that emerge from solu-
tions to one of the research problems mentioned above.
Note that not all items in above list are mutually exclu-
sive.

All tools and techniques, even automated ones,
should be designed on the basis of good usability engi-
neering practice: starting from an understanding of the
testers’ task and supporting it.

Tools and techniques are unlikely to be successful if
they impose too much of an overhead upon the tester,
be it in terms of advance learning, of modeling, of con-
figuration, or of results processing. For a tool to be
successful it should be accessible to anybody with a
basic understanding of software engineering and secure
programming.

6. Conclusion

This paper outlines a number of research problems

to be addressed in security testing. Some or even all of
these problems may have been worked on already by
researchers. However, this paper argues that the impact
of research upon industry practice seems very limited
so far. The author hopes that working on these prob-
lems will lead to a better understanding of vulnerabili-
ties and their causes, a better understanding of security
testing as such, and to better tools and techniques that
work in real-world settings.

There may be further problems and entirely differ-
ent points of view that have not been considered here.
This paper, though trying to outline a research agenda,
is meant primarily as an invitation to and starting point
for discussions. The key proposal of this paper is to
start from what security testers do today, and improve
on it.

A subject deliberately ignored in this paper is test-
ing techniques for specific vulnerabilities and tech-
nologies, such as cryptography. In some specialized
fields the situation may be different from what is de-
scribed here. But security testing has to take into ac-
count all aspects that matter to the real-world tester,
not just idealized showcases.

References

[1] Bugtraq mailing list archive, URL: http://www.
securityfocus.com/archive/1

[2] Common Vulnerabilities and Exposures,
http://cve.mitre.org/

[3] Full Disclosure mailing list archive, http://lists.netsys.
com/pipermail/full-disclosure/

[4] Nessus, URL: http://www.nessus.org/

[5] The GNU Netcat project, URL: http://netcat.
sourceforge.net/

[6] OWASP Top Ten Project, URL: http://www.owasp.org/
index.php/Category:OWASP_Top_Ten_Project

[7] OWASP WebScarab Project, URL: http://www.owasp.
org/index.php/Category:OWASP_WebScarab_Project

[8] Scapy, URL: http://www.secdev.org/projects/scapy/

[9] Socat – multipurpose relay, URL: http://www.dest-
unreach.org/socat/

[10] Validation report Xerox WorkCentre/WorkCentre Pro
232/238/245/255/265/275 Multifunction Systems, CCEVS-
VR-06-0021, Version 1.0, 6 April 2006, URL:
http://www.office.xerox.com/latest/SECCR-04.PDF

[11] Anderson, R. J., Security Engineering: A Guide to
Building Dependable Distributed Systems, Wiley, New York,
2001.

[12] Anderson, J. R., “Why Cryptosystems Fail”, in: Pro-
ceedings of the 1st ACM conference on Computer and com-
munications security, Fairfax, Virginia, 1993.

[13] Howard, M., LeBlanc, D.C., Writing Secure Code. Mi-
crosoft Press, 2002.

[14] Mauw, S.; Oostdijk, M., “Foundations of Attack Trees”
in: Dongho Won and Seungjoo Kim, editors, International
Conference on Information Security and Cryptology – ICISC
2005, LNCS 3935, pages 186-198, Seoul, Korea, December
2005. Springer-Verlag, Berlin.

[15] McGraw, G., Software Security: Building Security In,
Addison-Wesley, 2006.

[16] Miller, B. et al., “Fuzz Revisited: A Re-examination of
the Reliability of UNIX Utilities and Services”, Technical
Report CS-TR-95-1268, University of Wisconsin, April
1995.

[17] O’Connor, B., “Vulnerabilities in Not-So Embedded
Systems”, Black Hat USA 2006 presentation slides, 2006.
URL: http://www.blackhat.com/presentations/bh-usa-06/BH-
US-06-OConnor.pdf

[18] Peine, H.; Mandel, S., “Sicherheitsprüfwerkzeuge für
Web-Anwendungen”, IESE-Report, 048.06/D, Kaiserslau-
tern, 2006.

[19] Schneier, B., “Attack Trees: Modeling security threats”,
Dr. Dobb’s Journal, December 1999.

[20] Thompson, H. H., “Why Security Testing is Hard”,
IEEE Security & Privacy, vol. 1, no. 4, July-August 2003.

[21] Thompson, H. H., Whittacker, J. A., Mottay, F. E..
“Software Security Vulnerability Testing in Hostile Envi-
ronments”, in: Proceedings of the 2002 ACM Symposium on
Applied Computing (SAC), March 10-14, 2002, Madrid,
Spain. ACM 2002.

[22] Whittacker, J. A.; Thompson, H. H., How to Break
Software Security, Addison-Wesley Longman, Amsterdam,
2003.

[23] Wiegenstein, A; Weidemann, F; Schumacher, M; Schin-
zel, S, “Web Application Vulnerability Scanners - a Bench-
mark”, Version 1.0, Virtual Forge GmbH, 2006-10-04. URL:
http://www.virtualforge.de/whitepapers/web_scanner_
benchmark.pdf

[24] Yee, G., “Recent Research in Secure Software”, NRC
Paper No.: NRC 48478; ERB-1134, National Research
Council Canada, March 2006.

